1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
| from fastapi import FastAPI, Request from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig import uvicorn import json import datetime import torch
DEVICE = "cuda" DEVICE_ID = "0" CUDA_DEVICE = f"{DEVICE}:{DEVICE_ID}" if DEVICE_ID else DEVICE
def torch_gc(): if torch.cuda.is_available(): with torch.cuda.device(CUDA_DEVICE): torch.cuda.empty_cache() torch.cuda.ipc_collect()
app = FastAPI()
@app.post("/") async def create_item(request: Request): global model, tokenizer json_post_raw = await request.json() json_post = json.dumps(json_post_raw) json_post_list = json.loads(json_post) prompt = json_post_list.get('prompt')
messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ]
input_ids = tokenizer.apply_chat_template(messages,tokenize=False,add_generation_prompt=True) model_inputs = tokenizer([input_ids], return_tensors="pt").to('cuda') generated_ids = model.generate(model_inputs.input_ids,max_new_tokens=512) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] now = datetime.datetime.now() time = now.strftime("%Y-%m-%d %H:%M:%S") answer = { "response": response, "status": 200, "time": time } log = "[" + time + "] " + '", prompt:"' + prompt + '", response:"' + repr(response) + '"' print(log) torch_gc() return answer
if __name__ == '__main__': model_name_or_path = '/root/autodl-tmp/qwen/Qwen1.5-7B-Chat' tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto", torch_dtype=torch.bfloat16)
uvicorn.run(app, host='0.0.0.0', port=6006, workers=1)
|